Characterization of rhodanese-tetracyanonickelate. An active site complex that slows sulfur-free rhodanese conversion to inert conformers.

نویسندگان

  • S F Chow
  • P Horowitz
چکیده

The structure of the rhodanese-tetracyanonickelate (E X Ni(CN)2-4) complex has been characterized here in spectral and physical studies using urea as a structural perturbant. UV difference absorption, sedimentation velocity ultracentrifugation, fluorescence, and circular dichroism data show no significant conformational differences between sulfur-free rhodanese (E) and the E X Ni(CN)2-4 complex. The urea-induced enzyme structural transition curves were noncoincident when different structural parameters were monitored. For E, the urea concentrations giving half-maximal change (Cm) were: Cm = 3.0 M for activity measurement; Cm = 2.8 M for protein intrinsic fluorescence intensity; Cm = 4.3 M for ellipticity at 220 nm; and Cm = 3.3 M for wavelength of fluorescence emission maximum. For the E X Ni(CN)2-4 complex, Cm was shifted to a higher urea concentration relative to that found for E when activity (Cm = 3.6 M) and native protein fluorescence (Cm = 3.6 M) were the measured parameters but not when the wavelength of the emission maximum and ellipticity were monitored. Furthermore, urea-induced rhodanese structural changes were time-dependent and Ni(CN)2-4 binding on E slowed enzyme inactivation that is associated with structural relaxations. These findings, that Ni(CN)2-4 affects structural relaxations in rhodanese, are of particular interest in light of the recent suggestion that the E X Ni(CN)2-4 complex mimics a normally inaccessible intermediate in catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active site structural features for chemically modified forms of rhodanese.

In the course of the reaction catalyzed by rhodanese, the enzyme cycles between two catalytic intermediates, the sulfur-free and the sulfur-substituted (persulfide-containing) forms. The crystal structure of sulfur-free rhodanese, which was prepared in solution and then crystallized, is highly similar to that of sulfur-substituted enzyme. The inactivation of sulfur-free rhodanese with a small m...

متن کامل

Biochemical properties and biological functions of the enzyme rhodanese in domestic animals

The enzyme rhodanese (thiosulfate: cyanide sulfurtransferase) is a ubiquitous enzyme and its activity ispresent in all living organisms. Many functions including cyanide detoxification, formation of iron-sulfurcenters and participation in energy metabolism have been attributed to this enzyme. The enzyme catalyzesthe transfer of a sulfur atom from sulfane containing compounds (such as thiosulfat...

متن کامل

Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese.

The conformations of sulfur-free and sulfur-containing rhodanese were followed with and without the detergent lauryl maltoside after guanidinium chloride (GdmCl) addition to 5 M to study the apparent irreversibility of denaturation. Without lauryl maltoside, sulfur-containing rhodanese denatured in a transition giving, at approximately 2.3 M GdmCl, 50% of the total denaturation induced change o...

متن کامل

Structural studies of bovine liver rhodanese. I. Isolation and characterization of two active forms of the enzyme.

Crystalline bovine liver rhodanese, prepared by ammonium sulfate and pH precipitation, has been shown to be comprised of two fully active components present in approximately equal amounts which are separable by polyacrylamide gel electrophoresis and by ion exchange chromatography. The two rhodanese forms, designated A and B on the basis of their order of elution from columns of DEAE-Sephadex, a...

متن کامل

The rhodanese/Cdc25 phosphatase superfamily

Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. They are found as tandem repeats, with the C-terminal domain hosting the properly structured active-site Cys residue, as single domain proteins or in combination with distinct protein domains. An increasing number of reports indicate that rhodanese modules are versatile sulfur carriers that have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 16  شماره 

صفحات  -

تاریخ انتشار 1986